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What is “Good” Training Data?

Data Quality Dimensions that Matter for Machine Learning

Felix Neutatz / Ziawasch Abedjan

I. Introduction

Machine learning (ML) is becoming prevalent in almost all areas of our everyday 
life and enables artificial intelligence (AI) technologies that affect humans signifi-
cantly with applications in personalized medicine,1 automated credit rating,2 and 
justice systems,3 to name a few. As a result, it is vital to make sure that decisions 
and results that originate from ML are of high quality and explainable. One of the 
imminent problems in current AI systems is that they amplify societal bias, which 
harms minorities and other protected groups disproportionately. At this point, it is 
necessary to keep in mind that humans are not only at the receiving end of ML 
systems but also influence these systems at various major stages of their develop-
ment and production life cycle. At each of these stages, there is a potential to spill 
over societal bias into the ML model. First, the data that is used to train these sys-
tems can originate from humans. For instance, Microsoft presented a chatbot that 
continuously learned from the interaction with its users. Some adversaries fed the 
bot with offensive content that in turn changed the behavior of the chatbot to be 
racist and sexist.4 Second, humans develop and configure the embedded ML pro-
duction pipelines. Technical choices of the developer can introduce technical bias 
into the entire process from data preparation to model creation.5 Third, humans 
analyze and interpret the data and the ML model predictions. After the model 
returns the predictions, humans still have to decide how to design the thresholds 
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for different decisions and how to rate different types of mispredictions.6 False 
negatives and false positives have different implications and societal cost. For 
example, detecting a cancer diagnosis by mistake (false positive) has a different 
impact than missing a cancer case (false negative). Humans have to understand 
these trade-offs and configure the model and the resulting decision support sys-
tem, accordingly. One of the main pillars of responsible data management is to 
ensure good training data.7 It is widely understood that “good” training data yields 
high ML model accuracy. Traditionally, good training data has the following char-
acteristics: correct, complete, up-to-date. The data needs to be correct because if 
annotations are incorrect ML models learn incorrect patterns. Likewise, missing 
properties inside a dataset reduce the overall expressiveness of a model. Finally, 
data has to be up-to-date because if we train a model on data from 10 years ago 
and apply it to data of today, temporal concept shifts change the distributions that 
cause mispredictions. The larger the amount of such data, the easier it is for the 
model to generalize and differentiate noise from actual trends. With the matu-
rity of ML algorithms and systems and their application on real-world use cases, 
good data also has to satisfy additional characteristics: it has to be representative 
of different groups of a population and free from historic bias. A representative 
sample of all data is important to ensure high model accuracy for all population 
groups. For example, in many image datasets, people with dark skin are under-
represented. This misrepresentation has led to poor prediction performance for 
this group. E. g. Twitter was focusing white people’s faces while cropping the faces 
of people with dark skin8 or Google9 and Facebook’s10 models predicted people 
with black skin as gorillas. While representation requires explicit modeling of dif-
ferent population groups, for some use cases such information leads to ampli-
fication of discrimination based on historic biases towards certain groups. One 
example of such a case is a system for supporting hiring decisions. It turned out 
that the majority of the historic data contained male hires. Therefore, the model 
learned that gender was an accurate signal for the prediction task and its pre-
dictions discriminated against women.11 This example shows that it is crucial to 
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consider concepts, such as equality of outcome through demographic parity, to 
protect minority groups. Often the problem is linked to so-called sensitive attri-
butes that are historically correlated but causally irrelevant for the outcome of 
a prediction task, such as gender, race, or religion. A naive solution would be to 
simply drop those sensitive attributes. This way the algorithm is blind across these 
dimensions. Unfortunately, this approach does not work well in practice because 
the model might learn the affiliation of persons to minority groups from other 
attributes – so-called proxy attributes. For instance, Selbst showed that zip code is 
a proxy attribute for race in the US.12 In this paper, we focus on the aspect of fair 
data engineering. We can approach fairness in two ways: from the individual per-
spective or the group perspective. Individual fairness ensures equal treatment for 
people with similar characteristics. Group fairness ensures equal treatment across 
groups – no group is disadvantaged. At the first glimpse, individual and group 
fairness might contradict each other in some cases. For example, a higher qualified 
person from a majority group misses an opportunity, which fell to the top candi-
date from a minority group despite lower qualification scores. However, Reuben 
makes the case that with careful consideration, we can avoid such dilemmas.13 For 
instance, in the case of financial lending, we start by asking what is the purpose of 
the algorithm – here, which persons should get a credit? The only important point 
is that a person can pay back the credit in the end. The second question that has 
to be answered is what kind of assumptions do we have for the data. E. g. where 
does the data about creditworthiness come from and is this data meaningful or 
is it prejudicial? The next question is which characteristics should be used? To 
estimate creditworthiness, one can rely on income, securities, and assets. Finally, 
we need to understand whether there is historic or structural discrimination in 
the data. For example, maybe a structurally poor place of residence is associated 
with credit denial because despite having high potential to be creditworthy they 
lack the historic evidence that equals to candidates from more prosperous places. 
After answering all these questions, one can understand the domain-specific bias 
problem and can address it with a technical solution. The examples show that the 
original goal of good data to maximize model accuracy is not sufficient. Instead, 
one has to consider the problem as a multi-objective problem or more practically 
a maximization problem under constraints. Constraints are minimum thresholds 
on metrics that capture novel quality dimensions of ML. These quality dimensions 
prominently include fairness, privacy (e. g. GDPR compliance), or explainability. 
In this article, we will briefly discuss the implication of data quality with regard 
to traditional dimensions as well as novel population-level dimensions on AI and 
surface the current state-of-the-art technologies that reduce bias in ML technol-
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ogies and their training data. We demonstrate one particular technology, which is 
designed to deal with sensitive attributes and their proxies and conclude with a 
set of suggestions for reconciling socio-technical aspects of algorithmic fairness.

II. How Data Quality impacts AI

ML relies on – and is “programmed” by – training data.14 Thus, the quality of the 
training data is fundamental toward robust and accurate models, and ultimately 
toward useful and reliable ML‑based applications.15 Thus, there is no surprise that 
data and ML engineers report spending a tremendous amount of time on prepar-
ing datasets for ML applications.16 Traditional dimensions of data quality include 
completeness, correctness, and freshness of datasets and are per se independent 
of the downstream ML application. Completeness of a dataset captures to which 
degree a dataset is populated with content. Incomplete datasets typically miss attri-
bute values either because of negligence in the data creation phase or because cer-
tain data values are not known. As ML‑based systems are required to understand 
associations between given properties and the target property, it is easy to see that 
missing values might reduce the performance. Similarly, it is well understood that 
incorrect values in the data might negatively impact the accuracy of an ML system. 
Research on data quality has so far led to a large number of methods, heuristics, 
and systems that support data quality improvement through data cleaning, which 
comprises the identification and correction of data quality problems, such as iden-
tifying missing values and imputing them. While most of the existing work focuses 
on cleaning independent of the application – here ML – there are novel sparks 
towards ML‑dependent cleaning techniques. Traditional techniques typically rely 
on error models to detect duplicate or outlying values, external constraint infor-
mation (e. g., business or integrity constraints), or human assessment and input 
(e. g., to recommend repairs or cleaning examples). The separation of data cleaning 
and the application can lead to several problems. First, it is hard for users to antic-
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ipate which cleaning routines matter for the downstream ML routine, which will 
unequivocally lead to a waste of resources and user time. Interestingly, improving 
a dataset could in fact degrade the outcome of the downstream ML model.17 For 
instance, it is not clear whether a partial improvement of the data quality might 
lead to other inconsistencies with systematic errors that had been exploited via 
downstream neural networks. In a prior study, we manually curated clean and dirty 
versions of the FAA Flights delay18 and U. S. Census datasets19. Each dataset served 
a different prediction task. We showed that whether or not cleaning is beneficial 
heavily depends on the application. For the Flights dataset, cleaned training data 
improves the model accuracy on both clean and dirty test data. However, cleaning 
the Census training data actually degrades the model accuracy on dirty data. In 
fact, training and testing on dirty data is as accurate as training and testing on clean 
data, yet requires no effort. This experiment provides evidence that cleaning is not 
a local “one-and-done” process. In fact, the appropriate cleaning intervention is 
dependent on the type of error as well as the rest of the application, and should be 
approached from this perspective. Consequently, all of the complexities inherent 
in modern ML applications become complexities that affect how data is cleaned. 
In prior work, we argued that data cleaning needs to take an end-to-end applica-
tion-driven approach that integrates cleaning throughout the ML application.20 
In contrast to traditional data cleaning, there are approaches that are embedded 
within the ML development phase, which focuses on model development, training, 
and evaluation. Although the ML community has developed a multitude of robust 
model designs and training techniques,21 it is often better to directly address errors 
and biases in the data.22 Methods that are applied in this phase leverage the ML 
models and validation data to identify both the data points for cleaning and the 
appropriate cleaning routine that directly improve the ML accuracy. So far the dis-
cussed methods and problems related to objective and factual problems with the 
data. However, data quality in the context of AI spans other dimensions as well. In 
particular, traditional means of cleaning do not count in population-level prob-
lems. A recent study found out that existing data imputation methods rely on the 
maximum likelihood of values skewing the result of imputation towards majority 
groups and amplifying misrepresentation of minority groups in the data.23 In fact, 
the data quality dimension of fairness with regard to metrics on demographic par-
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ity has gained more attention in recent years. In the next section, we discuss how 
existing work tries to assess and enforce fairness in ML applications.

III. How Data leads to Discrimination

Machine learning finds patterns in the data to make predictions for new unseen 
data. If this data is biased, the extracted patterns are likely to be biased, too. These 
biased patterns lead to predictions that discriminate. Biases sneak into an ML 
application across the entire ML workflow, which consists of data collection, 
pre-processing, modeling, and post-processing. Friedman and Nissenbaum identi-
fied three main types of bias: pre-existing, technical, and emergent.24 To describe 
these types of bias in more detail, we explain them with the help of the workflow 
for an ML hiring application as shown in Figure 1. Pre-existing bias has its roots 
in the current beliefs of society and is generally independent of the ML applica-
tion. For instance, the fraction of women in the German parliament in 2021 is 
only 35 %,25 or the well-known phenomenon – the gender pay gap – that women 
earn significantly less than men.26 So, even if we would be able to gather data on 
all people in the world, an accurate representation of existing circumstances in our 
society would let our ML application to reproduce discrimination. For instance, 
if a model leverages the salary to predict whether a person can get a credit or not, 

Figure 1: Fairness in the ML Workflow.
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the gender pay gap makes the salary a proxy attribute for gender and therefore, 
the model will discriminate against women. Consider our running example of an 
ML‑driven hiring application. To address pre-existing bias, the data scientists have 
to first assess the types of risks with regard to discrimination and how existing 
circumstances influence the outcome. For instance, one could follow the concept 
of substantive equality of opportunity that only compares people to other people 
with the same circumstances.27 Next, the data scientist has to define the charac-
teristics that should be allowed to judge the applicants. Assume, the available data 
is the gender, the experience, the hobby, the motivation letter, and two reviewers’ 
scores. The data scientist would carefully remove attributes that are not supposed 
to influence the outcome. The application should be blind with regard to attributes, 
such as gender. Ideally, the scientist would also identify proxies of such attributes 
that strongly correlate with their values. For example, the data scientists discover 
that the hobby is a proxy attribute for gender. So, they remove this attribute. Fur-
thermore, they realize that reviewer 2 prefers applicants from certain universities. 
Therefore, they group the score by the university and normalize it. This way, they 
make sure that they can use the reviews without introducing bias. Finally, the data 
scientists have to make sure that, for all specified features, the necessary data is 
available across all groups because missing values might introduce new bias. This 
concept is known as feature equity.28 After formulating the beliefs and identifying 
the attributes, one might think that, now, we can develop any algorithm and do 
not need to worry about fairness anymore because the data does not contain any 
sensitive or proxy attributes. This blindness approach is quite common. However, 
in many cases, we still have to measure the bias based on the formulated beliefs 
because the underlying data or the following algorithm might introduce bias. 
Technical bias is introduced or enforced by the developed ML application. Tech-
nical bias can occur at any stage of the ML workflow, ranging from sampling, pre-
processing, modeling, and post-processing. In the sampling phase, the data scien-
tists have to choose from a large number of previous applicants who they choose 
as a foundation to learn who to hire. An example of bias in sampling is an Amazon 
ML application, which “learned” that female candidates are less likely to succeed at 
the company because their data contained mainly male candidates.29 So, we have 
to ensure to draw a representative sample across all demographic groups. This 
ensurance is known as representation equity.30 So, the data scientists might access 
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data about previous applicants in the company and whether they perform well or 
poorly later on. Needless to say that it is critical that the HR department ensures 
that the pool of applicants is as diverse as possible and that the interview process 
is as fair as possible. Otherwise, the first step of sampling is likely to introduce bias 
already. Pre-processing is another step that might introduce bias. It transforms the 
data into a machine-understandable format. These transformations include data 
cleaning and augmentation. For instance, Schelter et al. showed that missing value 
imputation such as mean value imputation can enforce bias, especially because 
minority groups are more likely to avoid disclosing sensitive information.31 There-
fore, developers have to keep in mind that any data transformation that joins or 
filters the data might change the data distribution and introduce or amplify bias. 
An example of how data augmentation can introduce bias can be explained by 
the transformation that translates the textual motivation letter into numeric form. 
For instance, one can leverage a neural network that models the language based 
on the data extracted from Wikipedia to transform the textual motivation letter 
into a numerical vector. However, 87 % of the contributors of Wikipedia are men 
and therefore consciously or unconsciously introduce bias.32 Therefore, data sci-
entists have to check all components and libraries that they include into the work-
flow. In the post-processing phase, data scientists modify the thresholds when to 
hire a candidate or not. Depending on the company, the policy allows for more 
false positives or false negatives. False negatives are applicants that are not hired 
but would have been great employees if they would have had a chance to prove 
themselves. False positives are applicants that are hired but turn out to not fit the 
company. Modifying these thresholds, the data scientists always keep track of fair-
ness because different thresholds might affect minorities in different ways. After 
some time with the company, the hired applicant’s data can be used to train a 
new model. However, the data scientists keep monitoring to avoid any reinforcing 
biases in this feedback loop. For instance, they should be careful to avoid survi-
vorship bias. In the Second World War, the US army analyzed where planes were 
shot to strengthen the parts that are more likely to be in danger. Abraham Wald 
realized that it was best to strengthen the parts that in the analysis were unscathed 
because all the planes that they analyzed actually made it back to safety.33 So, in 
our case, we run into the danger of only including data points about applicants 
that were actually hired. While one can remove preexisting bias and technical bias 
in a system during implementation, emergent bias arises only in a context of use, 
e. g. by incorrect use or distribution shifts over time. For instance, after finishing a 
hiring application for the German branch of a company, a manager wants to use 
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covery and Data Mining (KDD), 2015, pp. 259 – 268; Zhang, L. / Wu, Y. / Wu, X., A causal framework 
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tional Joint Conference on Artificial Intelligence (IJCAI), 2017, pp. 3929 – 3935; Asudeh, A. / Jagadish, 
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37  Galhotra, S. / Shanmugam, K. / Sattigeri, P. / Varshney, K. R., Fair data integration, CoRR, vol. 
abs / 2006.06053, 2020.

38  Asudeh / Jagadish / Stoyanovich / Das (Fn. 35).
39  Schelter / He / Khilnani / Stoyanovich (Fn. 5); Kilbertus, N. / Rojas-Carulla, M. / Parascandolo, G. /  

Hardt, M. / Janzing, D. / Scholkopf, B., Avoiding discrimination through causal reasoning, Proceed-
ings of the International Conference on Neural Information Processing Systems (NeurIPS), 2017, 
pp. 656 – 666; Nabi, R. / Shpitser, I., Fair inference on outcomes, Proceedings of the Conference on 
Artificial Intelligence (AAAI), 2018, pp. 1931 – 1940; Russell, C. / Kusner, M. J. / Loftus, J. R. / Silva, R., 
When worlds collide: Integrating different counterfactual assumptions in fairness, Proceedings of 
the International Conference on Neural Information Processing Systems (NeurIPS), 2017, pp. 6414 –  
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the same application internationally. However, the school systems differ signifi-
cantly and might discriminate against some nationalities. Therefore, it is import-
ant that whenever an application is used in a new context, one has to analyze all 
potential biases again. This concept is also known as output equity.34 We showed 
that bias can be introduced at multiple stages of any ML application. As far as 
the ML and data science community is aware of these problems there have been 
attempts and technical solutions for several of the aforementioned pitfalls.

IV. State of the Art

Algorithmic bias reduction has been approached from different perspectives. In 
this section, we briefly survey existing approaches for fair ML and discuss fun-
damentals of feature engineering, which will be important to present our take 
on bias reduction in ML. Algorithmic bias reduction can be categorized three-
fold: by where in the ML pipeline they address the issue, how they measure bias, 
and what types of bias they address. Algorithmic bias reduction can be imple-
mented at three stages: during preprocessing, in-processing, or post-processing. 
Pre-processing approaches35 reduce the bias by modifying the data, e. g. shifting 
the probability distributions in the data,36 selecting features,37 or weighting fea-
tures38. In-processing approaches39 reduce the bias in the model, e. g. by modifying 
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criminatory predictors, Proceedings of the Conference on Learning Theory (COLT), vol. 65, 2017, 
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the model’s loss.40 Another example is to optimize the model’s hyperparameters, 
which describe the configurations of a model for a setting, based on a fairness 
metric.41 Post-processing approaches42 reduce the bias in the final model predic-
tions by applying transformations.43 The second way to differentiate bias reduc-
tion approaches is to compare their fairness metrics. The two main approaches to 
measuring fairness are associational and causal. Associational approaches measure 
fairness in the model’s predictions between groups of the sensitive feature. Three 
representative fairness criteria that are used by such approaches are independence, 
separation, and sufficiency.44 Independence describes the concept of returning the 
same prediction for two similar individuals that only differ with respect to their 
sensitive attribute, such as religion, race, or gender. However, this metric ignores 
potential correlations between the group and the prediction target. Separation 
allows the score and the sensitive attribute to correlate to the extent that is justified 

Figure 2: Architecture of the Fairness Explorer.
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